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Abstract 
This paper studies the structural similarity of neighbourhoods in urban street networks 
represented by axial maps. Here r-th neighbourhood of a node is defined as a subgraph 
induced by nodes encountered within radius r from the reference node. Through the 
case study of London, we identify three distinct types of scaling between radius and 
neighbourhood size: the power-law, the exponential-law, and the super-power. 
Individual nodes are grouped by a form of similarity represented by each of those 
scaling laws. First, the power-law with scaling dimension 2.73 is found to be the 
dominant type of scaling. Under the power-law, it is shown that the “urban correlation”, 
redefined in this paper as the homogenisation of mean depth, should be the normal 
state of affairs in local analysis. Until recently, particularly in network theory where the 
completion of formalism matters, it is the presence of such homogeneity that has been 
paid most attention. However, we also observe that the other minor-types of scaling 
seem to introduce potentially important, life-like local variations underneath the apparent 
homogeneity. This findings will lead us to some new insights on the genuinely complex 
and heterogeneous structure of urban street networks we study. In parallel, we also 
report that the street network of London is neutral in terms of the degree-degree 
correlation, redefined in this paper as the homogenisation of control. Neutrality, or the 
absence of the degree-degree correlation, has been so far regarded mainly as the 
property of random networks. However, random networks would never exhibit the 
power-law scaling of neighbourhood size. From this we propose the formula of ‘being 
neutral without being random’ to define a phenomenon that is specifically ‘urban.’  

Introduction 
Local analysis has been introduced in space syntax as a heuristic way 
of overcoming “edge effects” (Penn et al. 1998). Here edge effects 
refer to phenomena in which nodes close to the edge of a graphically 
mapped area are less central purely because of our selection of the 
boundary for analysis. Every global analysis is thus affected to some 
extent by edge effects. The problem will be resolved, ultimately and 
ideally, by making the analysis independent from the subjective 
procedure of drawing boundaries.  
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In a recent paper, Dalton (2005) has observed that local analysis 
leads to a kind of homogeneity in which nodes are all equally central 
as they have more or less the same mean depth. This observation, 
which he dubbed “urban correlation”, is repeatedly confirmed for 
almost any ‘axial’ maps analysed, but not for randomly generated 
maps; so specifically “urban” phenomenon it seems to be. It follows, 
as he shows, that each node is differentiated only by means of the 
size of the neighbourhood defined by a certain depth from it. 

Then, we are entitled to assume that neighbourhood size may be 
redundant as it is aptly reducible to the degree (or connectivity) of 
nodes. That is to say, the neighbourhood of a node should be large if 
it is locally well connected to others. On what basis can we say that 
neighbourhood size gives us any other additional information than 
degree? Perhaps, is this reduction to degree what we should expect 
by eliminating edge effects? Is the knowledge of degree distribution 
the ultimate result of local analysis?  

In this paper, we study the structural similarity of neighbourhoods in 
urban street networks. Through this, we aim to rediscover, 
independently of degree, the true differences of neighbourhoods 
beneath the apparent homogeneity, and derive a criterion that enables 
us to distinguish what is unique and thus irreducible in local analysis. 
These subject issues are explored systematically through the axial 
map of Inner London. We also discuss, in line with the new results 
from Hillier et al. (2007), some possible implications the results in this 
paper may have in understanding the structure and functionality of 
urban street networks.  

Local Variables 
First, we define the necessary basics on local analysis and fix the 
notation. Let G  denote a simple undirected graph consisting of a set 
of N  nodes and a set of E  edges. Depth (or distance) ),( uvdd =  
between a pair of nodes v  and u  in G  is defined as the discrete 
length of geodesic path connecting them.  

This path metric allows us to introduce a neighbourhood concept. The 
r th neighbourhood of v , denoted by )(vrΓ , is a subgraph induced 
by nodes u  with ruvd ≤),( , and the boundary of the neighbourhood, 

denoted by )(vrΓ∂ , is the set of nodes u  having exactly ruvd =),( . 
The boundary parameter r  is called the ‘radius’ of the neighbourhood. 
Let us denote the orders of the r th neighbourhood of v  and its 
boundary by )()( vvN rr Γ=  and )()( vvn rr Γ∂=  respectively, 

hence formulating the cumulative relationship∑ =
=

r

d rd vNvn
0

)()( . By 

contrast, if the whole graph is accounted for, we will have 

∑ =
=

)(

0
)(ve

d d Nvn , with )(ve  being the eccentricity of v , i.e. the depth 

to a node farthest from v . We note that the two definitions provide us 
with a first important distinction between local and global analyses: the 
global becomes the local through a trade-off in which N is localised 
into )(vNr  while )(ve  is standardised into r . 

The differential relationship between )(vNr  and )(vnr  is given by: 

)()()( 1 vNvNvn rrr −−=  (1) 

with 1)()( 00 == vNvn , corresponding to the reference node itself, 

for all v  in G . We further note that, 
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1)()()()( 1011 −=−= vNvNvNvn  is equivalent to the degree (or 
connectivity) of v , i.e., the number of nearest neighbours of v i. 

The total depth, Dr(v), of v is defined as: 

∑
=

⋅=
r

d
dr vndvD

1
)()(  (2) 

If we substitute )(vnr  in (1) into (2), the equation for total depth 
becomes: 

)()()()(
)()()(2)(2)()(

)}()({)(

110

11201

1
1

vNvNvNvrN
vrNvrNvNvNvNvN

vNvNdvD

rr

rr

d

r

d
dr

−

−

−
=

−−−−=
−++−+−=

−⋅= ∑

L

L

 

and this simplifies to: 

∑
−

=

−=
1

0

)()()(
r

d
drr vNvrNvD  (3) 

Dividing )(vDr  by )(vNr , we have the mean depth, )(vdr , relative 
to v : 

∑
−

=

−=
1

0 )(
)(

)(
r

d r

d
r vN

vN
rvd  (4) 

from which it is obvious that )(vdr  must be strictly less than radius 
applied. Note also that this equation is true of both local and global 
analyses, since global mean depth is just )()( vd ve . 

Closeness centrality, )(vCr , of v  measures the extent to which the 

node is close to all other nodes in )(vrΓ  and has been defined simply 
as the reciprocal of mean depth (Freeman 1979), that is:  

)(
1)(
vd

vC
r

r =  (5) 

In space syntax, closeness centrality is modified to reflect the 
‘assumption’ that mean depth tends to increase with neighbourhood 
size. The modified measure is called ‘integration’, )(vI r , of v , which 
we can write in its simplistic form as: 

)(
)(log)(

vd
vNvI

r

r
r =  (6) 

where )(log vNr  has been introduced as a correction factor (Park 
2005). The correction factor thus specifies that ‘mean depth increases, 
in average, following the logarithm of neighbourhood size.’ This 
scaling is popularly known as ‘small-world’ behaviour (Watts & 
Strogatz 1998). 

Mean depth depends solely on the depth-based partition of the set of 
nodes and does not reflect the distribution of edges within the 
neighbourhoods. For this reason, we consider a different kind of local 
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measure in space syntax, called ‘control’ (Hillier & Hanson 1984), 
which takes into account a complete description of connectivity 
structure around v . The control, )(vct , of v  measures the extent to 
which the nearest neighbours u  of v are accessible to each other only 
by way of v, given their degree distribution. It has been defined as: 

∑
Γ∂∈

=
)( 11

)(
1)(

vu un
vct  (7) 

where )(1 un is the degree of the nearest neighbours of v .  

Note first that the control is completely independent of the depth 
metric. But this original definition of control suffers from degree-
degree correlation biases (Soffer & Vàzquez 2004), and consequently 
tends to give values that are often trivially related to the degree of v . 
For instance, if a graph is organised in such a way that high-degree 
nodes are linked to nodes with low-degree, high-degree nodes will 
always have high control values. We can fix this problem by 
relativising the control against its possible maximum, given the degree 
of v . The maximum )(1max vnct =  will be achieved when 1)(1 =un  

for all u in )(1 vΓ∂ . Then, the proper definition of control, without the 
effects of degree correlation, is: 

∑
Γ∂∈

==′
)( 11max 1

)(
1

)(
1)()(

vu unvnct
vctvtc  (8) 

Note also that )(vtc ′  in (8) is simply )(/1 vH nn , that is, the reciprocal 
of the ‘harmonic mean’ of the degree of the nearest neighbours of v . 
We can thus say that the higher average degree of the nearest 
neighbours of v , the less control it will exert over communication or 
movement among its neighbours. The control may be viewed just as a 
local version of what is usually called “betweenness centrality” at the 
global scale (Freeman 1979).    

The Domain of Local Analysis 
The aim of this section is to delimit the domain of local analysis where 
the urban correlation prevails and to clarify its implications for local 
analysis. As originally reported by Dalton (2005), the urban correlation 
refers to a phenomenon in which total depth scales linearly with 
neighbourhood size, i.e. )(~)( vNvD rr . This in turn implies that 

mean depth, )(/)()( vNvDvd rrr = , remains homogeneous across 
an entire graph. Dalton has therefore maintained that local mean 
depth cannot be related to the diversity of urban phenomena observed 
in reality. 

Consequently, with the urban correlation, closeness centrality 
becomes:  

constant~
)(

1)(
vd

vC
r

r =  (9) 

By contrast, for integration, we have: 

)(log~
)(

)(log
)( vN

vd
vN

vI r
r

r
r =  (10) 
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The equations (9) and (10) state that every node is equally central 
under the urban correlation, wherever it is located; but not equally 
integrated as it takes advantage of differences in neighbourhood size. 

The difference and similarity of closeness centrality and integration 
can be now clarified. In the local, a node is integrated not because it 
has small mean depth but because it has large neighbourhood size 
relative to a given radius, so densely populated. In this case, 

)(log vNr  in the formula of integration does not function merely as a 
correction factor; but actually re-defines the measure, independently 
of mean depth, as that which must be conceptually distinguished from 
closeness centrality. In the global, however, every neighbourhood has 
the same order N , and consequently, integration becomes 
differentiated not by neighbourhood size but by mean depth alone. In 
this case, there must not be any conceptual differences between 
closeness centrality and integration. 

To illustrate how integration changes its nature dynamically as radius 
increases, we take Gassin (Hillier & Hanson 1984) as an example (Fig. 
1). Gassin is small enough to allow us to trace the dynamic process 
over the entire range of radii. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) The strong ‘positive’ correlation between neighbourhood size and 
total depth is observed at the local scale ( 3≤r ), namely, the urban 
correlation. The slope of the regression should approximate the 
common value of local mean depth. Yet, as radius increase globally, 
the urban correlation breaks down; hence the differentiation of global 

Figure 1: 

Correlation matrix for 
Gassin. Column (A): 
neighbourhood size vs. total 
depth. Column (B): local total 
depth vs. global total depth. 
Column (C): total depth vs. 
integration. Column (D): local 
integration vs. global 
integration 
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mean depth. The edge effect begins to take place from 4=r  
(indicated by a dotted circle). 

(B) The strong ‘negative’ correlation between local total depth and 
global total depth is also observed ( 3≤r ). This suggests that total 
depth behaves more like degree at the local scale ⎯ recall that 

)()( 11 vnvD = . Yet there is a turning point, 4=r , beyond which this 
tendency becomes completely reversed. In other words, as radius 
increases globally, the regression rotates anticlockwise and eventually 
changes its sense; hence the differentiation of total depth from degree. 

(C) There is a ‘positive’ correlation between total depth and integration. 
But the correlation seems relatively weak even when 2=r . It 
becomes weaker and then disappears completely at the turning point 

4=r , beyond which begins to increase rapidly. The higher 
correlation found in the global is trivial as it is what we have 
predetermined as such through the definition of integration (or 
closeness centrality). But their difference in the local is worth bearing 
in mind. It is not the case that high integration signifies low total depth 
automatically. 

(D) There is a consistent ‘positive’ correlation between local and 
global integration, which is often called ‘synergy’ in space syntax. But 
it would only conceal the “paradox of integration” unless we see the 
causal factor underneath the association. That is, such a consistent 
positive correlation results from double negation, as it were, which 
include the empirical results in (B) and (C), plus the predetermined or 
theoretical negative relation between global total depth and global 
integration (Fig. 2). 

 

 

 

 

 

 

 

In effect, we can divide the entire range of radii into three subsections: 
(1) the ‘local’ where the urban correlation prevails; (2) the ‘non-local’ 
where the measures lose their consistent senses completely (which 
we must thus try to avoid in any practice of analysis); and (3) the 
‘global’ where the senses of measures are completely reversed from 
those in the local.  

The local can be then safely marked by so-called “radius-radius” in 
space syntax. Radius-radius, denoted by cr , is a critical radius set to 
the mean depth of most ‘globally’ integrated node, that is, 

⎣ ⎦)(min )( vdr vec =  (e.g. 2=cr  in the case of Gassin). As Hillier 
(1996, p.163) remarks, “The effect of a radius-radius analysis is to 
maximise the globality of the analysis without inducing ‘edge effect’, 
[…].” Throughout this paper, we shall have the notion of radius-radius 
define the domain of local analysis, i.e. crr ≤≤1  for all v  in G ii.  

Within the domain of local analysis, total depth is reduced to 
neighbourhood size and mean depth loses its discriminating power. 
However, beyond the domain, without the urban correlation, it is mean 
depth that becomes all powerful.  

Figure 2: 

Diagram explaining the 
apparent positive correlation, 
or ‘synergy’, between local 
and global integration 
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Structural Similarity 
Scaling Dimension 
Now we demonstrate that the urban correlation, or the 
homogenisation of mean depth in the local, can be observed if there 
exists any kind of scaling between radius and neighbourhood size. 
Just to illustrate: if )(vNr  is a function of r , i.e. )()( rfvNr = , then, 
it follows from (4) that local mean depth becomes also a function of r  
only. Applying the same radius to all v  in G  will, therefore, entail the 
same local mean depth. The aim of the following discussion is then to 
specify a model function for )(vNr  and to deduce its consequences 
in a manner appropriate to test it. 

The two simple scaling laws shall be contrasted: 
αrvNr =′ )(  (11) 

and 
)1()( −=′ r

r evN β  (12) 

where )(/)()( 1 vNvNvN rr =′ denotes relative neighbourhood size 
with respect to the degree of v, and 0>α  and 0>β  are 
parameters that need to be estimated empirically. Note that relative 
neighbourhood size has been introduced to make scaling functions 
independent of degree. Obviously, 1)(1 =′ vN for all v  in G .  

Taking the logarithms of the both sides of equations (11) and (12), we 
obtain: 

rvNr log)(log α=′  (13) 

and 

)1()(log −=′ rvNr β  (14) 

Both scaling laws state that neighbourhood size must grow with 
radius; but, for small radii, more rapidly according to the ‘power law’ 
(11) than to the ‘exponential law’ (12). However, for large radii, the 
increasing rate of change of neighbourhood size is reversed so that it 
grows much more rapidly according to the exponential law than to the 
power law. If we thus plot )(vNr′  against r , a straight line will 
emerge in doubly logarithmic scale for the power law (slope α ), while 
only in semi-logarithmic scale for the exponential law (slope β ) (Fig. 
3). 

 

 

 

 

 

 

 

 

The power law can be observed in ‘scale-free’ graphs, while the 
exponential law in ‘random’ or ‘small-world’ graphs (Csányi & 
Szendroi 2004). Theoretically, the power law is known to reflect that 

Figure 3: 

Two different forms of 
scaling between radius and 
relative neighbourhood size: 
the power-law ( ) and the 
exponential-law ( ), plotted 
in (a) double logarithmic plot 
and (b) semi logarithmic plot. 
Here we assume that the 
graph is infinitely large, so 
does not undergo any edge 
effects 
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the short-cut effects forming random or small-world graphs are 
significantly diminished by some strong ‘spatial’ constraints such as 
geographical embedding (ben-Avraham et al. 2003). This means that 
long-range connections leading to small-world behaviour cannot occur 
in a purely random fashion. By contrast, the exponential law is 
typically found for such ‘trans-spatial’ relationships as the WWW, the 
scientific collaboration network, the network of corporate elites and the 
like. 

If the power law is observed, the parameterα  in (11) shall define the 
‘scaling dimension’ starting from v , i.e. )(vαα = . If α  is relatively 
stable across all v, we will also say that G  has the scaling 
dimension )(Gαα = . Clearly, this definition is the discrete analogue 
of ‘fractal dimension.’ Nowotny and Requardt (1998) have remarked 
that such a concept is intrinsic as it is determined by the geometric or 
relational organisation of the graph itself rather than by the ambient 
space in which the graph is embedded. Furthermore, they showed the 
structural stability of scaling dimension under local perturbations. That 
is, no insertion of a finite number of additional edges between nodes 
could change the scaling dimension. 

Now by substituting (11) into (4), we can show that )(vdr  is 
expressed under the power law as: 

ϕ
α
α

+
+

≈ rvdr 1
)(  (15) 

with )2/1)(2/1( rαϕ −=  which converges on 0.5 as r  increasesiii. 

Alternatively, from α/1)(vNr r′=  in (11), we obtain: 

ϕ
α
α α +′
+

≈ /1)(
1

)( vNvd rr  (16) 

The equations (15, 16) clearly show that mean depth under the 
power-law scaling is linearly proportional to r  or some power of 

)(vNr′ . On the one hand, if )(Gαα = , it is obvious that 

)(vdr becomes independent of v , which will lead us to an 
observation of the urban correlation. On the other, if )(vαα = , 

)(vdr  may vary from one node to one another. But we note that the 
equation (15) is rather insensitive to the small variation of α , so that 
the urban correlation can be still preserved to some significant level. 
For instance, as we will see, )(vα of urban street networks vary 

normally in the interval of ]3,2[ . If this is the case, )(vdr  will vary in 
the remarkably narrow interval of ]75.0,67.0[ rr , approximately. 

Next, the same procedure can be considered for the exponential law 
(12). If the exponential law is followed, )(vdr  becomes: 

β

β

β e
e

e
rvd

r

rr −
−

⋅−=
1
11)(  (17) 

Furthermore, since 1)(log)/1( +′= vNr rβ  from (14), we get 
alternatively: 

ξ
β

+′= )(log1)( vNvd rr  (18)
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where the substitution 1)]1/()1)[(/1(1 <−−−= βββξ eee rr  has 

been made. We note that ξ  converges to )1/()2( ββ ee −−  as r  
increasesiv . 

From (17, 18), we can see that mean depth under the exponential law 
is also linearly proportional to r , as under the power law; but now to 
the logarithm of )(vNr′ . This implies that the urban correlation can be 
observed in principle for random or small-world graphs, and thus, 
against Dalton’s conjecture, it may not be a specifically “urban” 
phenomenon after all. However, we point out that, in contrast to the 
stability of mean depth under the power-law, mean depth under the 
exponential law, as shown in (17, 18), is very sensitive to the 
individual variations of )(vββ = . This seems to suggest that the 
power-law scaling between radius and neighbourhood size is more 
likely to be the source of the observed urban correlation. To verify this 
claim is then what remains to be done.  

Assortativity by Degree 
In complex network theory, it has been recently found that the 
‘assortativity by degree’, a preference for high-degree nodes to 
associate with other high-degree nodes, captures a fundamental 
feature of graph structure. In this subsection, we briefly introduce the 
concept, with a particular emphasis on its possible relationship to our 
measure of control. 

A graph is called ‘assortative’ (or ‘dissortative’), if high-degree nodes 
tend to be attached with nodes with high (or low) degrees; and 
‘neutral’, if there is no such tendency. It is said that assortativity 
reflects well-defined “core-periphery” structure, while dissortativity 
highlights “hierarchical” structure.  

Pastor-Satorras, Vazquez & Vespignani (2001) and Newman (2002) 
have observed that social networks are typically assortative, while 
technological and biological networks, such as Internet, WWW, 
protein interactions, neural network, are typically dissortative. In urban 
contexts, Porta, Crucitti & Latora (2004) have studied 1-square-mile 
samples of urban street networks to find out that those are mainly 
dissortative. Xulvi-Brunet and Sokolov (2005) have demonstrated that 
the characteristic path length of a graph having a fixed degree 
sequence increases both with assortativity and dissortativity, while 
achieves minimum when it is neutral. In other words, neutral structure 
seems to provide a best solution in optimising “natural movement” in a 
network. 

There are several ways of measuring assortativity by degree, one of 
which is to calculate the degree-degree correlation. This is done by 
introducing a new quantity >< )(kAnn , which is the average degree 
of the nearest neighbours of v whose degree is k. Note the quantity is 
a function of degree, not of nodes, which can be written formally as 
conditional average: 

∑
∈

=
kDv

nn
k

nn vA
D

kA )(1)(  (19) 

where kD  is a set of nodes having degree k  and )(vAnn  is the 
‘arithmetic’ mean of the degree of the nearest neighbours of v . Then, 

>< )(kAnn  will increase according to the power law φkkAnn ~)( ><  

)0( >φ  if graphs are assortative; decrease )0( <φ  if they are 



Park; The Structural Similarity of Neighbourhoods in Urban Street Networks: A Case of London 

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007 

093-10 

dissortative; and flat )0( =φ  if neutral (Pastor-Satorras et al. 2001; 
Cantanzaro, Caldarelli & Pietronero 2004).  

In this paper we replace the arithmetic mean )(vAnn  in (19) by the 

harmonic mean )(vH nn  in (8), to have a new measure for the 
degree-degree correlation, that is: 

∑∑
∈∈ ′

==
kk DvkDv

nn
k

nn vtcD
vH

D
kH

)(
11)(1)(  (20) 

The replacement will not affect the sense of the degree-degree 
correlation, although it does not corroborate the stochastic model 
assumed in the references for the degree correlationv. The advantage 
of using the harmonic mean, if any, is thus practical. In particular, if 
the degree sequence of G  is ‘scale-free’, i.e. γ−kDk ~  (Li, Alderson, 

Tanaka, Doyle & Willinger 2005), )(vH nn  will be much more efficient 

than )(vAnn , since the former has a strong tendency to mitigate the 
influence of high-degree nodes.  

Now, suppose first that )(vH nn  is homogeneous across all v  in G . 

Then, we will have >< )(kH nn  that remains uncorrelated 
whatsoever with degree. The graph is neutral in the sense that it is 
neither of core-periphery nor hierarchical structure; but at least a 
mixture of the two. This will ensure, together with the homogenisation 
of mean depth, the structural similarity of neighbourhoods. On the 
other, if >< )(kH nn  increases (or decreases) with degree, i.e. 
assortative (or dissortative), we cannot say that, in spite of the 
homogenisation of mean depth, neighbourhoods are structurally 
similar to one another. 

Analysis: Inner London Case 
Now we are sufficiently prepared to apply what we have reviewed so 
far to the real case of Inner London ( 321,17=N , 452,36=E ). The 

radius-radius of Inner London is 9=cr  (i.e. the mean depth of Oxford 
street). For reference only, the maximum radius for global analysis is 

45max =r . 

5.1 Scaling Dimension 

We start from probing the urban correlation. Fig. 4(a) and (b) show the 
linear regression of )(vDr on )(vNr  for (a) 3=r  and (b) 9=cr . 

The urban correlation clearly exists with (a) 997.02 =R  and (b) 
994.02 =R . The values of mean depth remain accordingly 

homogeneous with (a) 22.050.2)(3 ±=vd  and (b) 

33.027.7)(9 ±=vd . Relative variations diminish as radius increases, 
although we can see that the urban correlation already begins to 
break down at the larger radius due to the edge effects. Then, Fig. 
4(c) and (d) show the spatial distribution of those minute variations in 
mean depth for (c) 3=r  and (d) 9=cr  respectively. In the former, 
streets with higher local mean depth (i.e. locally less central) are 
located mainly in the global centre of the bounded area, while, in the 
latter, form a ‘ring’ around the global centre. But it is not entirely clear 
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what these spatial distributions reveal to us as for the structure of the 
network in question.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Having observed the urban correlation, we now try to identify its cause. 
Fig. 5(a) shows >′< )(vNr , i.e. the average of )(vNr′  over all v  inG , 
as a function of r , forming a straight line when plotted in doubly 
logarithmic scale. Based on this plot we can infer that it is the power-
law scaling that has induced the urban correlation observed in Fig. 4. 
The scaling dimension, equivalent to the slope estimate, 
is 728.2)( == Gαα . This also implies that we need at least three-
dimensional space in which to embed the neighbourhoods. Notice the 
intercept is uninteresting as the fitting line must pass through the 
origin for any G .  

Then, from equation (17) and (18), it can be deduced that the average 
of mean depth over v  should increase following 

rrvdr /68.05.073.0)( −+>=<  and 

rvNvd rr /68.05.0)(73.0)( 37.0 −+′>=< . In Fig. 5(b) and (c), we 
compare the expected values of mean depth given by those formulae 
with the observed values over the entire range of radii. They are in 
good agreement in the local (white region), while diverge widely in the 
global due to the edge effect. The graph as a whole has therefore a 
structure that is far from being random or small-world. Importantly, this 
implies, against common critics, that axial graphs somehow internalise 
geometric or geographical constraints of the space from which it has 
been drawn out (Hillier, 1999). 

Although average neighbourhood size scales with radius following the 
power-law, there are important individual variations that cannot be 
treated as mere exceptions. In other words, the existence of scaling 
dimension )(Gα  at the collective level does not guarantee the 

Figure 4: 

The urban correlation in 
London. (a) 

)(67.2)( 33 vNvD =
 

( 997.02 =R ). (b) 
)(17.7)( 99 vNvD =

 

( 994.02 =R ). The images 
show the spatial variations of 
mean depth, where darker 
lines indicate higher values 
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existence of scaling dimension )(vα at the individual level (although 
the inverse is true). We thus now need to investigate further scaling 
behaviour starting from each node.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6(a)-(c) show )(vNr′  as a function of r , also plotted in double 
logarithmic scale, for some typical nodes of Inner London. They 
represent three distinct types: (a) one which follows the power law 
(straight line); (b) one which follows the exponential law (downward 
curvature); (c) one which we may call ‘super-power’ scaling as it lies 
well beyond what can be predicted by the power-law (upward 
curvature). We estimate about 62% belongs to the first type, 26% to 
the second, and 12% to the thirdvi. 

For the first type with the power-law scaling, we find that the scaling 
dimension )(vα of v is )40.0,66.2( 2  normally distributed, which 
traps safely the scaling dimension 73.2)( =Gα of G  as a whole. On 
the other hand, for the second type with the exponential scaling, we 
find )(vβ  is )13.0,77.0( 2  normally distributed. We can also see 
from Fig. 6(d)-(e) that the first-type nodes form a well-connected body 
of the street network, while the second-type nodes are scattered as 
rather isolated islands of different size (e.g. Primrose Hill, Barbican 
etc.)vii. At least, this seems to tell us that a mere collection of ‘small-
worlds’ cannot build a city. 

The neighbourhood size of the first and the second–type nodes can 
be then estimated using the formulae (11) and (12) respectively. Fig. 
7(a) compares those observed values with the estimated, when 3=r  
(without the edge effects). As expected, the agreements are good 
enough for both types of nodes (power: 83.02 =R ; exponential:). 
This means that neighbourhood size can be predicted, to some 
significant extent, only by knowing degree under each scaling law. 
Note also that the neighbourhood size of the second-type nodes is in 
average considerably smaller than that of the first-type.  

The solid points are translated vertically for better visual clarity. 

Next, Fig. 7(b) compares the observed values of mean depth with 
those estimated by the formulae (15) and (17) respectively. They are 

Figure 5: 

(a) The power-law scaling 
between radius and average 
neighbourhood size. (b) 
Average mean depth as a 
function of radius. (c) 
Average mean depth as a 
function of neighbourhood 
size ( : the observed 
values, : the expected 
values) 
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relatively well-fitted with the power scaling ( 76.02 =R ), while highly 
fluctuant with the exponential-scaling ( 43.02 =R ). Moreover, note 
that the mean depth of the second-type nodes is in average well 
below the common value of mean depth (indicated by vertical lines). 
This means that the exponential scaling is mainly responsible for the 
dissipation of the urban correlation by inducing minute variations to it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the third type of the super-power scaling, neither the power nor 
the exponential law can explain the actual data in any meaningful way. 
But at least we can observe that the nodes of this type tend to have 
the highest values for both neighbourhood size and mean depth. This 
happens due to the overwhelming dominance of close nodes over 
distant nodes. Fig. 6(f) shows the third-type nodes are mainly found in 
the areas close to the arterial streets with high degree, so that easily 
accessible to other areas, without being themselves arterial streets 
(e.g. local distributors directly connected to Oxford Street). 

Figure 6: 

The spatial distribution of 
individual nodes following (a) 
the power-law (62%) (b) the 
exponential-law (26%), and 
(c) the super-power scaling 
(12%) 
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Assortativity by Degree 
Fig. 8(a) shows the degree-degree correlation plotted in double 
logarithmic scale. It is found that 039.0−=φ , meaning that the 
network in question is slightly dissortative. However, such 
dissortativity has been caused mainly by nodes with degree 1 (i.e. no 
through streets) as they tend to be connected to nodes with much 
higher degree. If we disregard those outliers, it will be safe to 
conclude that the street network of London is neutral. This is also 
evidenced by studying separately the relationship between each 
scaling-type of streets and its degree correlation. As shown in Fig. 
8(a), no particular type displays any significant positive or negative 
degree correlation. We also confirm from Fig. 8(b) that the spatial 
distribution of relative control, i.e. 1/ )(vH nn , does not seem to reveal 
any interesting structural features of the network, except that those 
segregated streets tend naturally to have higher control values. All 
these results tell us that, in terms of local connections, the street 
network of London is quite homogeneous.  

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 
First, we have shown through the case study of London that the urban 
correlation, redefined in this paper as the homogenisation of mean 
depth, is the normal state of affairs in local analysis. Accordingly, it is 
suggested that we may utilise the urban correlation as a method of 
detecting the presence of the edge effects and thus of delimiting the 
domain of local analysis. Radius-radius, employed so far as a rule of 
thumb for the same purpose, is not always sufficiently small to 
eliminate the edge effects, so that warrants more cautious use. It is 
not because those effects could not have anything to do with realities 

Figure 7: 

The estimated and the 
observed values of 
neighbourhood size under 
each scaling law. (b) The 
estimated and the observed 
values of mean depth under 
each scaling law (the power-
law: , the exponential-law: 

). Both are for 3=r  

Figure 8: 

(a) The degree-degree 
correlation of London, 
showing no tendency of the 
degree-degree correlation 
( : all types, : the power-
law, Δ: the exponential-law, 
×: the super-power). (b) The 
spatial distribution of relative 

control )(vtc ′  
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but because they make measures lose their consistent meanings 
altogether. 

However, to put too much emphasis on the urban correlation itself is 
perhaps misleading, since it tends to conceal the truly local 
differences underneath the apparent homogeneity. Those differences 
are represented by three distinct types of scaling laws the sequence 
of each neighbourhood size follow with increasing radius. In the case 
of London, it is the power-law that is the dominant type of scaling. But 
other minor types of scaling cannot be simply neglected as they are 
found to articulate some interesting features of networks, such as the 
existence of ‘small-worlds’ in a city. Taken together, the minor types of 
scaling are observed to induce numerically minute but typically 
heterogeneous variations against what seems otherwise quite 
homogeneous. Without such variations, it would be indeed hard to 
reject the assumption of the primacy of degree in local analysis.  

We have also reported that the street network of London is neutral in 
terms of the degree-degree correlation, redefined in this paper as the 
homogenisation of control. This indicates that the network as a whole 
possesses neither a unifying core nor overarching hierarchical 
structure. This observation is valuable as we believe that the absence 
of assortativity is the least necessary condition for multi-centrality, or 
what Hillier (2007) envisage as ‘periodical area-isation’, to emerge in 
networks. Also, as Xulvi-Brunet and Sokolov (2005)’s previous work 
suggests, such neutral structure facilitates necessary communication 
or movement in the network and thus may reflect a long-term 
optimisation process with which the city has evolved. So far the idea 
of neutrality has been generally associated with randomness; but 
random networks do never exhibit the power-law scaling. ‘Being 
neutral without being random’ – this is, in effect, a phenomenon that 
we find specifically ‘urban.’ 
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i. )(vN r  is given directly by Depthmap, a space syntax software (Turner 2007), under the field name of “Node Count.” We 

can then deduce )(vnr  easily according to the equation (1). 

ii. However, we point out here that the determination of the local in this way is contingent upon that of the global. 

iii. By substituting (11) into (4), we have:  
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It is mathematically hard to express ∑ −

=

1

0

r

d
d α

in the above equation in terms of r  and α . But at least we know its lower 

and upper bounds from replacing it with integrals: 
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With these bounds we get: 
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Hence, for mean depth: 
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where, for the upper bound, we have expanded out 
1)/11( +− αr  to include only the first three terms. Consequently, we 

estimate the values of mean depth by the midpoint of the interval. 

iv. Similarly, by substituting (12) to (4), we have:  
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v. In the traditional model of preferential attachment for scale-free graphs it has been assumed that the probability of a new 
node v  to be connected to a previous node u  is a function of the degree of u  only, independently of the degree of v . 
The idea of assortativity has arisen by calling this assumption into question, and considers the degrees of v  and u  at the 
same time in measuring the probability of an edge uve = . With the harmonic mean, however, it is somewhat awkward to 
express such connection probabilities. 

vi. For all individual nodes, the r-squared values are calculated from the linear regression of (1) )(log vNr′ on rlog (the 

power-law), (2) )(log vNr′ on r (the exponential-law), and (2) )(log vNr′ on )log(log r  (the super-power). We can 
then assign a type of scaling to each node by choosing the highest value of r-squared. 

vii. In segment maps equipped with a metric distance function, this second-type nodes tend to produce a more distinct pattern 
of “patchworks.” See Yang & Hillier (2007), in which they study the rate of change of neighbourhood size (or node count). 
Notably, the second-type nodes with the exponential scaling will have the lowest rate of change at small radii, while the 
third-type with the super-power scaling will have the highest. However, such a difference in the rate of change is reversed at 
large radii. The similar relationship between the rate of change of neighbourhood size and metric mean depth is also 
reported in Hillier et al. (2007). 
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